A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw-steam-explosive extruder.

نویسندگان

  • Hong-Jia Zhang
  • Xiao-Guang Fan
  • Xue-Liang Qiu
  • Qiu-Xiang Zhang
  • Wen-Ya Wang
  • Shuang-Xi Li
  • Li-Hong Deng
  • Mattheos A G Koffas
  • Dong-Sheng Wei
  • Qi-Peng Yuan
چکیده

Steam explosion is the most promising technology to replace conventional acid hydrolysis of lignocellulose for biomass pretreatment. In this paper, a new screw-steam-explosive extruder was designed and explored for xylose production and lignocellulose biorefinery at the pilot scale. We investigated the effect of different chemicals on xylose yield in the screw-steam-explosive extrusion process, and the xylose production process was optimized as followings: After pre-impregnation with sulfuric acid at 80 °C for 3 h, corncob was treated at 1.55 MPa with 9 mg sulfuric acid/g dry corncob (DC) for 5.5 min, followed by countercurrent extraction (3 recycles), decoloration (activated carbon dosage 0.07 g/g sugar, 75 °C for 40 min), and ion exchange (2 batches). Using this process, 3.575 kg of crystal xylose was produced from 22 kg corncob, almost 90 % of hemicellulose was released as monomeric sugar, and only a small amount of by-products was released (formic acid, acetic acid, fural, 5-hydroxymethylfurfural, and phenolic compounds were 0.17, 1.14, 0.53, 0.19, and 1.75 g/100 g DC, respectively). All results indicated that the screw-steam-explosive extrusion provides a more effective way to convert hemicellulose into xylose and could be an alternative method to traditional sulfuric acid hydrolysis process for lignocellulose biorefinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enzymatic hydrolysis of steam exploded corncob residues after pretreatment in a twin-screw extruder

A modified twin-screw extruder incorporated with a filtration device was used as a liquid/solid separator for xylose removal from steam exploded corncobs. A face centered central composite design was used to study the combined effects of various enzymatic hydrolysis process variables (enzyme loading, surfactant addition, and hydrolysis time) with two differently extruded corncobs (7% xylose rem...

متن کامل

Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate

High costs and low production efficiency are a serious constraint to bio-based xylitol production. For industrial-scale production of xylitol, a plasmid-free Escherichia coli for arabitol-free xylitol production from corncob hemicellulosic hydrolysate has been constructed. Instead of being plasmid and inducer dependent, this strain relied on multiple-copy integration of xylose reductase (XR) ge...

متن کامل

Isolationand Characterization of Nanocrystal from Corncob Waste Using H2SO4 Hydrolysis Method (RESEARCH NOTE)

Corncob is one of the industrial waste has cellulose content of 39.1 wt%, which makes it has high potential to be a raw material in the production of cellulose nanocrystal. Corncob was delignificated with 3.5 wt% HNO3 and NaNO2 10 mg, precipitated process with 17.5 wt% NaOH, and bleached with 10 wt% H2O2. Cellulose nanocrystal was obtained by hydrolysis using 45 wt% H2SO4. Corncob and cellulose...

متن کامل

Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain.

Lignocellulosic biomass-derived sugars are considered nowadays to be an economically attractive carbohydrate feedstock for large-scale fermentations of bulk chemicals such as lactic acid. In the present study, corncob molasses containing a high content of xylose, which is one of the lignocellulosic biomasses and a waste by-product from xylitol production, was used for L-lactic acid production v...

متن کامل

Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester

In biofuel production from lignocellulose, low thermostability and product inhibition strongly restrict the enzyme activities and production process. Application of multiple thermostable glycoside hydrolases, forming an enzyme "cocktail", can result in a synergistic action and therefore improve production efficiency and reduce operational costs. Therefore, increasing enzyme thermostabilities an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioprocess and biosystems engineering

دوره 37 12  شماره 

صفحات  -

تاریخ انتشار 2014